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Slide polynomials

Sami Assaf* and Dominic Searles’
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Abstract. The fundamental slide basis of polynomials was recently introduced by the
authors. We survey positivity properties of this basis, and applications to the important
Schubert and key bases of polynomials.

Résumé. La base fondamentale des polynomes a été récemment introduite par les
auteurs. Nous étudions les propriétés de positivité de cette base, et les applications a
les bases des polyndmes importants de Schubert et des clés.
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1 Introduction

Symmetric and quasisymmetric polynomials have many bases with interesting combi-
natorial properties and relationships to one another, and many beautiful and powerful
tools and models have been developed to explain their combinatorics. In contrast, for
the full polynomial ring, the combinatorial theory is much sparser and less developed.
We aim to lift bases and models from symmetric and quasisymmetric polynomials to the
tull polynomial ring, as a means of better understanding important bases of polynomials
such as the Schubert and key polynomials.

Sy > Ka » Qg > Sa

1 [ |

sy — QSy ——— F,

Figure 1: A right arrow from f to g indicates that f expands positively into the basis
{g}, and an up arrow from f to g indicates that f is contained in the basis {g}.

The fundamental slide polynomials {3,}, introduced by the authors in [2], are a ba-
sis of polynomials that lifts Gessel’s fundamental basis of quasisymmetric polynomials
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[8]. Fundamental slide polynomials exhibit several desirable positivity properties: both
Schubert and key polynomials expand positively in this basis, and we give positive com-
binatorial formulas for these expansions. Moreover, the fundamental slide basis has
positive structure constants: we give Littlewood-Richardson rules for these numbers,
and also for the fundamental slide expansion of products of Schubert polynomials. For
key polynomials, we introduce the model of Kohnert tableaux [1] to define the new
quasi-key basis {Q,} of polynomials, which lifts the quasi-Schur basis [9] of quasisym-
metric polynomials, and to give positive combinatorial formulas for the expansion of key
polynomials into quasi-key polynomials, and quasi-key polynomials into fundamental
slide polynomials. Figure 1 shows how our new bases fit into the existing picture.

2 Slide polynomials and Schubert polynomials

We first define the new fundamental slide basis of polynomials [2]. For a a weak com-
position of length 1, let x denote the monomial x{' - - - x3", and let flat(a) be the (strong)
composition obtained by removing all 0 terms. Given weak compositions 4, b of length
n, we say that b dominates a, denoted by b > a, if by +---+b; > a; +--- + a; for all
i =1,...,n. Note that this extends the usual dominance order on partitions. A composi-
tion B refines a composition « if & can be obtained by summing consecutive entries of S,
for example, (2,1,2) refines (2,3) but (1,2,2) does not.

Definition 2.1 ([2]). For a weak composition a of length n, define the fundamental slide
polynomial Fz = §a(x1,...,%n) by

8:11 = Z xb/ (21)
b=a
flat(b) refines flat(a)

For example, we have
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Notice that §p03) is not quasisymmetric in (x1,x2,x3,x4): it uses the monomial
x%xi but does not use x%xi. However, {§,} contains Gessel’s fundamental basis {F,} of
quasisymmetric functions [8]: if the nonzero entries of a occur in an interval with last
nonzero entry in position k, §, is equal to Fy(x1, ..., xx), where « is the nonzero entries
of a read from left to right ([2, Lemma 3.8]).

The Schubert polynomials &, indexed by permutations, were introduced by Las-
coux and Schiitzenberger [11]. These polynomials form a Z-basis of polynomials and
represent Schubert basis classes in the cohomology of the flag manifold. For more on
Schubert polynomials, see [13]. We give the combinatorial definition due to [4, 3, 7].
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A (reduced) pipe dream is a tiling of the first quadrant of Z x Z with elbows ~- and
finitely many crosses 1 such that no two lines, or pipes, cross more than once. The shape
of a pipe dream is the permutation obtained by following the pipes from the y-axis to
the x-axis. Let PD(w) denote the set of pipe dreams of shape w. For example, the pipe
dreams of shape 135264 € S¢ are given Figure 2.
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Figure 2: The 25 elements of PD(135264).

To each pipe dream P we associate the weak composition wt(P), where wt(P); is the
number of crosses in the ith row of P.

Definition 2.2 ([3]). For w a permutation with no descents at or beyond 7, the Schubert
polynomial Sy = Sy(x1,...,x,—1) is given by

Gp=», xViP), (2.3)
PePD(w)

For example, from Figure 2 we can compute

x22000 21100 21010 21001 20200 20110 20101

+ 2x

lelOO +x
02200

+ X
12010 +x

02110

+ X

12001 +2x
02101

+ X

11200 +2x
01210

+ X
11110

+ X

+ 2x11101 + xlOZlO (2.4)
01201

G135064 =

+2

+x10201

+ X + X + X + X + X

Definition 2.3. ([2]) A pipe dream is quasi-Yamanouchi if, for every i, the westernmost +
in row i is in the first column or lies weakly west of some + in row i + 1. Let QPD(w)
denote the set of quasi-Yamanouchi pipe dreams of shape w.
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For example, of the pipe dreams for 135264 shown in Figure 2, five are quasi-
Yamanouchi. These are shown in Figure 3.

6 6 6 6 6
5 5 5 5 5
4 4 4 4 4
3 3 3 3 3
2 2 2 2 2
1~ 1~ 1~ 1~ 1~
123456 123456 123456 123456 123456

Figure 3: The five quasi-Yamanouchi pipe dreams for w = 135264.

Quasi-Yamanouchi pipe dreams index the fundamental slide expansion of Schubert
polynomials.

Theorem 2.4. ([2]) For w any permutation, we have

Gu= > Fwp) (2.5)
)

PeQPD(w

For example, the fundamental slide expansion of S135064 has only five terms, corre-
sponding to the five quasi-Yamanouchi pipe dreams of Figure 3:

Si35064 = F(0,1201) T F02,1,01) + 50,2200 +F(1,1,2,00) + F(1,21,00)- (2.6)

This significantly compacts the 25-term monomial expansion of Gi35064. Theorem 2.4
generalizes to Schubert polynomials Gessel’s fundamental quasisymmetric expansion
[8] of Schur polynomials.

The fundamental slide basis also has a triangularity with respect to the Schubert
basis, allowing computationally efficient changes between these bases. Let L(w) denote
the Lehmer code of w, i.e., L(w); is the number of j > i such that w; > w;.

Proposition 2.5. ([2]) For w any permutation, there are coefficients c,,, € Z > such that

Sv=FLw) + ), CwsSb- 2.7)
b>L(w)

We now consider stability properties of the fundamental slide expansion. For w a per-
mutation of n, let 1" x w be the permutation (1,...,m,w(1) + m,...w(n) + m) of n + m,
and for a a weak composition of length 7, let 0™ x a be the weak composition of length
n + m obtained by prepending m zeros to a. Let R(w) be the set of reduced decompo-
sitions of w. One can define an explicit statistic # on permutations ([2]), indexing the
precise point at which the fundamental slide expansion of &, stabilizes.

Theorem 2.6. ([2]) For w a permutation, if n(w) < 0, then #QPD(w) = #R(w), and otherwise
0 < #QPD(w) < - -- < #QPD(1"®) x w) = - .. = #R(w). (2.8)
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In particular, the fundamental slide expansion of a Schubert polynomial is stable
precisely when its terms are in bijection with R(w).

Corollary 2.7. ([2]) For any permutation w, let y = n(w). Then, for any m > 1, we have
Glmxw = Z[gﬂ ‘ 617] xw]gom—ﬂ xXar (29)

a

where [§a | S11xw| means the coefficient of §, in the fundamental slide expansion of S1i .

For example, we have

Goa153 = F(1,201) T 521,01 T 52200)
Gussa64 = (01,201 +502,1,01) + 50,2200 T 5(1,1,200) + 5(1,2,1,0,0)/
S1246375 = $0,0,1,201) T 5(0,021,01) T 5002200 T 5(0,1,1,2,0,0) T 5(0,1,2,1,0,0)-

and the fundamental slide expansion of Gqm 24153 has 5 terms for all m > 1.

3 Products

We give a combinatorial formula for the structure constants of the fundamental slide
basis by generalizing the shuffle product of Eilenberg and Mac Lane [6] to weak compo-
sitions. Let ¢§ denote the empty word.

Definition 3.1 ([6]). The shuffle product of words A and B, denoted by A L1 B, is defined
recursively by

ALLI@Z@I_I_IAZ{A} and ALI_IBZ{Al(AZAg(A)I_I_IB)}U{Bl(AI_I_IBZBg(B))},

That is, A LI B is the set of all ways of riffle shuffling the terms of A, in order, with
the terms of B, in order. For example, we have

5511182 5511812 5518112 5581112 5851112 8551112
5511821 5518121 5581121 5851121 8551121 5518211
5581211 5851211 8551211 5582111 5852111 8552111
5825111 8525111 8255111

5511182 =

The descent composition of C, denoted by Des(C), is the lengths of successive increasing
runs of the letters read from left to right. For the example above, the last three terms on
the right hand side have descent compositions (2,2,3),(1,1,2,3), (1,3, 3), respectively.

Definition 3.2. ([2]) Let 4,b be weak compositions of length n. Let A and B be the
words defined by A = (2n — 1) ---(3)%-1(1)* and B = (2n)" --- (4)P-1(2)P, and let
Des 4 (C); (respectively Desg(C);) be the number of letters from A (respectively B) in the
ith increasing run of C. Define the shuffle set of a and b, denoted by SS(a, b), by

SS(a,b) = {Ce AL B | Dess(C) = a and Desg(B) > b}. (3.1)
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For example, S5((0,2,0,3),(1,0,0,1)) is given by

5581112 5851112 8551112 5581121 5851121
5852111 8552111 5825111 8255111

S5((0,2,0,3),(1,0,0,1)) = { 8551121 5581211 5851211 8551211 5582111

Definition 3.3. ([2]) For weak compositions 4, b of length n, define the slide product of a
and b, denoted by a LU b, to be the formal sum

awb= 2 Des(bump(a’b)(C)) (3.2)
CeSS(a,b)
where bump , ,(C) is the unique element of 0" —Des(C) 11 C with Des 4 (bump , ;) (C)) =
a and Desg(bump, ,\(C)) > bandif D € 0"~ L C satisfies Des 4 (D) > a and Desg(D) >
b, then Des(D) > Des(bump, ;(C)).

Continuing with our example, we have

(0,2,0,3)w(1,0,0,1) = (3,0,0,4) +(2,1,0,4) + (1,2,0,4) + (3,0,3,1) + (2,1,3,1)
(1,2,3,1) + (3,0,2,2) + (2,1,2,2) + (1,2,2,2) + (3,0,1,3)
(2,1,1,3) + (1,2,1,3) + (2,2,0,3) + (1,3,0,3).

Theorem 3.4. ([2]) For weak compositions a and b of length n, we have

Falp = ) e | aw b3, (3.3)

c

where [c | a W b] means the coefficient of ¢ in the slide product a LU b.

From the running example, we have

5020351001 = 53004 T521,04) t51204) +353031) +52131)
§1,231) 83022 82122 81,222 +8301,3)
21,13 81,213 T 82,203) T 8(1,303)-

Since the Schubert polynomial &, represents the Schubert class of w in the coho-
mology of the flag manifold, the structure constants ¢/, of the Schubert basis enumerate
flags in a generic triple intersection of Schubert varieties. Thus these so-called Littlewood—
Richardson coefficients are nonnegative integers. A fundamental problem in Schubert cal-
culus is to find a positive combinatorial construction for these numbers. One impediment
to solving this problem is that computations quickly become intractable when multiply-
ing out monomials. The following Littlewood—Richardson rule for the fundamental slide
expansion of the product of Schubert polynomials gives us a more compact formula that
should make computer experimentation possible.
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Theorem 3.5. ([2]) For u, v permutations and a a weak composition, define cj, ,, by

CHCHE P (3.4)
a
Then we have
Cho = > [a | wt(P) wwt(Q)]- (3.5)
(P,Q)€QPD(ut) xQPD(v)

For example, we can compute the product G415362431 by

GSon15362431 = (S1,201) + F2101) + F2200) Fa,210 +F211,0))
= 2411 +28331,1) T Su211) T 52420
+28(3,3,2,0) + §(4220) + 53,410 T 5(43,1,0)
= (Bearn + 36311 +Su211) + Fes1n) + (Fes20)
+ (F2420) + 83320 + F4220) + (F341,0) + F(43,1,0))
= Ggz62415 + Gu5231 + G15312 + G364125 + Sae2135-

Here, in the last step we made use of the triangularity between the Schubert basis and
the fundamental slide basis given in Proposition 2.5.

Moreover, similarly to Theorem 2.6, one can define an explicit statistic { on pairs of
permutations ([2]) that indexes the precise point at which the fundamental slide expan-
sion of a product of Schubert polynomials stabilizes.

Theorem 3.6. ([2]) For permutations u,v, let { = {(u,v). Then for all m > {, we have

SimxuSimyy = Z[Sa ‘ 61§xu61§xv]gom*5xa' (3'6)

a

4 Kohnert tableaux and key polynomials

The key polynomials, originally defined by Demazure [5] and studied combinatorially
by Lascoux and Schiitzenberger [12], form another important Z-basis for polynomials.
There are many combinatorial definitions of key polynomials: see, e.g., [14]. We will use
a model due to Kohnert [10].

A diagram is an array of finitely many cells in the first quadrant of Z x Z. Define the
key diagram of a to be the diagram with a; cells in row i, left justified. A Kohnert move on
a diagram moves the rightmost cell of a given row to the first available position below,
jumping over other cells in its way as needed. Let KM(a) be the set of all diagrams that
can be obtained by applying a series of Kohnert moves to the key diagram of a. For
example, see Figure 4.
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x [ % x [ % x[x] x[x] [x] X X

[¥] x[x] [x[x]X] x[x] [x[x[x] [x]x[X] X X[ X

Figure 4: The nine Kohnert diagrams for (0, 3,2).

Definition 4.1 ([10]). The key polynomial indexed by 4, denoted by «,, is given by

Ky = Z WD) (4.1)
DeKM(a)

where wt(D) is the weak composition whose ith part gives the number of cells in row i.
For example, from Figure 4 we can compute
Kozp = X032 4 (122 4 4212 | 3302 1221 | (311 (320 4 4131, ;230

Definition 4.2. ([1]) Given a weak composition a of length n, a Kohnert tableau of shape a
is a diagram filled with entries 171,2%,...,n", one per cell, satisfying:

(i) there is exactly one i in each column 1 through a;;
(ii) each entry in row i is at least i;
(iii) the i’s weakly descend from left to right;
(iv) if i < j appear in a column with 7 above j, then there is an i right of and strictly
above j.

Denote the set of Kohnert tableaux of shape a by KT(a).
For example, Figure 5 shows the elements of KT(0, 3,2). Compare this with Figure 4.

313 313 3]3] 3[3] 3] 3 3

2] 2[2] [2]2]2] 212] [2]2]2] [2]2]2] 3 313

Figure 5: The nine Kohnert tableaux of shape (0, 3, 2).

Theorem 4.3. ([1]) There is a weight-preserving bijection between KM(a) and KT(a). Thus,
Ko = Z xWHT), (4.2)
TeKT(a)

where wt(T) is the weak composition whose ith part is the number of cells in row i of T.
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Definition 4.4. ([1]) A Kohnert tableau is quasi-Yamanouchi if the leftmost cell in each
nonempty row i either has entry equal to i, or is weakly left of some cell in row i + 1.
Denote the set of quasi-Yamanouchi Kohnert tableaux of shape a by QKT (a).

For example, Figure 6 gives the quasi-Yamanouchi Kohnert tableaux of shape (0, 3, 2).

2[2]2] [2]3 2[2[2] [2]2]2]
2[2] 3 313

Figure 6: The four quasi-Yamanouchi Kohnert tableaux of shape (0, 3,2).

Similarly to Theorem 2.4, quasi-Yamanouchi Kohnert tableaux index the fundamental
slide expansion of a key polynomial.

Theorem 4.5. ([1]) For a weak composition a, we have

K= Y Swn, (4.3)

TeQKT(a)
where wt(T) is the weak composition whose ith part is the number of cells in row i of T.

Continuing the running example, from Figure 6 we can compute

Ko32 = $032 + 221 + 5131 + 5230

Similarly to Theorem 2.6, one can define an explicit statistic 77’ on weak compositions
([1]), indexing the precise point at which the fundamental slide expansion of x, stabilizes.
Let sort(a) be the entries of a arranged in decreasing order, and SYT(sort(a)) the set of
standard Young tableaux of shape sort(a).

Theorem 4.6. ([1]) For a composition a of length n, and m > n’(a), we have
0 <* QKT(a) < --- <* QKT(07® x a) = .- =* QKT(0™ x a) =* SYT(sort(a)).  (4.4)
Corollary 4.7. ([1]) For any weak composition a, let ' = y'(a). Then, for any m > ', we have

Komxg = Z[Sb | KO”/Xa]gOm*V/xb' (45)
b

From Figures 6 and 7, we compute

K3 = 3§32
Koz = $032 +T221 +$131 + 5230
Koo32 = §0032 + 50221 + S0131 + S0230 + S1220/

and |QKT(0™ x (3,2))| = 5 for any m > 2.
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3[3] 4 414 4] 3]

Figure 7: The five quasi-Yamanouchi Kohnert tableaux of shape (0,0, 3, 2).

5 Quasi-key polynomials
We now impose additional conditions on Kohnert tableaux that will provide a combina-
torial model for a new family of polynomials.

Definition 5.1. ([1]) Given a weak composition a of length n, a quasi-Kohnert tableau of
shape a is a Kohnert tableau of shape a satisfying the following additional conditions:

(i) the leftmost column is strictly increasing from bottom to top, and
(ii) if i < j are in consecutive columns with i left of and weakly above j, then a; > a;.

Denote the set of quasi-Kohnert tableaux of shape a by qKT(a).

For example, only the first eight Kohnert tableaux in Figure 5 satisfy the quasi-
Kohnert conditions for the shape (0, 3, 2).

313 313 3[3] 3[3] 3] 3 3
2] 2[2] [2]2]2] 2[2] [2]2]2] [2]2]2] 3

Figure 8: Quasi-Kohnert tableaux of shape (0,3,2).

We now define quasi-key polynomials as the weighted sum of quasi-Kohnert tableaux.

Definition 5.2. ([1]) The quasi-key polynomial indexed by a, denoted by 1y, is given by
Qo= > (5.1)

TeqKT(a)
For example, from Figure 8, we compute

Qozo = x032 | 122 (212, 1302, 221, \ 311, 4320 | 131

The quasi-key polynomials also expand positively in the fundamental slide basis,
with the expansion indexed by the set QqKT(a) of quasi-Kohnert tableaux of shape a
that are also quasi-Yamanouchi.
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Theorem 5.3. ([1]) For a weak composition a of length n, we have

Q= ), Fwn:- (5.2)
TeQqKT(a)
44 4] (4]
31313] [3]4 3[3[3] 313[3] [3]3
3[3] 4] 2[2 2] [3]
2]

Figure 9: Quasi-Yamanouchi quasi-Kohnert tableaux of shape (0,0, 3,2) (left three) and
of shape (0,2,3,0) (right two).

For example, we compute the fundamental slide expansion for the quasi-key poly-
nomials for (0,0,3,2) and (0,2,3,0) using the quasi-Yamanouchi Kohnert tableaux that
satisfy the quasi-Kohnert conditions as depicted in Figure 9. In this case, we have

Qo032 = F0032 + So221 + F0131 and Q0230 = F0230 + F1220-

Recalling Figure 7, observe that Qgos2 + Qo230 = ¥0032-

Key polynomials expand positively in quasi-key polynomials. A left swap on a weak
composition a exchanges two parts a; < 4; of 2 where i < j. Let Iswap(a) be the set of
weak compositions obtainable via some (possibly empty) sequence of left swaps on 4,
and Qlswap(a) the dominance-minimal elements of Iswap(a).

Theorem 5.4. ([1]) For any weak composition a,

Kag = Z Qb. (5-3)

beQlswap(a)
By Theorem 5.4, we have the following corollary to Theorem 4.6:

Theorem 5.5. ([1]) For any weak composition a and for any m > n’(a), we have

Qomxa = Z[Sb ‘ Qor]/xa]SOrnfiy’Xb- (54)
b
For example,
Q3 = F
Qozz = Fo32 + 5221 + S131

and Qg 3> has three terms for m > 1.
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