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Slide polynomials
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Abstract. The fundamental slide basis of polynomials was recently introduced by the
authors. We survey positivity properties of this basis, and applications to the important
Schubert and key bases of polynomials.

Résumé. La base fondamentale des polynômes a été récemment introduite par les
auteurs. Nous étudions les propriétés de positivité de cette base, et les applications à
les bases des polynômes importants de Schubert et des clés.
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1 Introduction

Symmetric and quasisymmetric polynomials have many bases with interesting combi-
natorial properties and relationships to one another, and many beautiful and powerful
tools and models have been developed to explain their combinatorics. In contrast, for
the full polynomial ring, the combinatorial theory is much sparser and less developed.
We aim to lift bases and models from symmetric and quasisymmetric polynomials to the
full polynomial ring, as a means of better understanding important bases of polynomials
such as the Schubert and key polynomials.

Sw κa Qa Fa

sλ QSα Fα

Figure 1: A right arrow from f to g indicates that f expands positively into the basis
tgu, and an up arrow from f to g indicates that f is contained in the basis tgu.

The fundamental slide polynomials tFau, introduced by the authors in [2], are a ba-
sis of polynomials that lifts Gessel’s fundamental basis of quasisymmetric polynomials
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[8]. Fundamental slide polynomials exhibit several desirable positivity properties: both
Schubert and key polynomials expand positively in this basis, and we give positive com-
binatorial formulas for these expansions. Moreover, the fundamental slide basis has
positive structure constants: we give Littlewood-Richardson rules for these numbers,
and also for the fundamental slide expansion of products of Schubert polynomials. For
key polynomials, we introduce the model of Kohnert tableaux [1] to define the new
quasi-key basis tQau of polynomials, which lifts the quasi-Schur basis [9] of quasisym-
metric polynomials, and to give positive combinatorial formulas for the expansion of key
polynomials into quasi-key polynomials, and quasi-key polynomials into fundamental
slide polynomials. Figure 1 shows how our new bases fit into the existing picture.

2 Slide polynomials and Schubert polynomials

We first define the new fundamental slide basis of polynomials [2]. For a a weak com-
position of length n, let xa denote the monomial xa1

1 ¨ ¨ ¨ x
an
n , and let flatpaq be the (strong)

composition obtained by removing all 0 terms. Given weak compositions a, b of length
n, we say that b dominates a, denoted by b ě a, if b1 ` ¨ ¨ ¨ ` bi ě a1 ` ¨ ¨ ¨ ` ai for all
i “ 1, . . . , n. Note that this extends the usual dominance order on partitions. A composi-
tion β refines a composition α if α can be obtained by summing consecutive entries of β,
for example, p2, 1, 2q refines p2, 3q but p1, 2, 2q does not.

Definition 2.1 ([2]). For a weak composition a of length n, define the fundamental slide
polynomial Fa “ Fapx1, . . . , xnq by

Fa “
ÿ

běa
flatpbq refines flatpaq

xb, (2.1)

For example, we have

Fp0,2,0,3q “ x0203
` x0230

` x2003
` x2030

` x2300
` x0212

` x1112
` x2012

` x2102 (2.2)

`x2111
` x2120

` x0221
` x2021

` x1121
` x2201

` x2210
` x1103

` x1130.

Notice that Fp0,2,0,3q is not quasisymmetric in px1, x2, x3, x4q: it uses the monomial
x2

2x3
4 but does not use x2

3x3
4. However, tFau contains Gessel’s fundamental basis tFαu of

quasisymmetric functions [8]: if the nonzero entries of a occur in an interval with last
nonzero entry in position k, Fa is equal to Fαpx1, . . . , xkq, where α is the nonzero entries
of a read from left to right ([2, Lemma 3.8]).

The Schubert polynomials Sw, indexed by permutations, were introduced by Las-
coux and Schützenberger [11]. These polynomials form a Z-basis of polynomials and
represent Schubert basis classes in the cohomology of the flag manifold. For more on
Schubert polynomials, see [13]. We give the combinatorial definition due to [4, 3, 7].
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A (reduced) pipe dream is a tiling of the first quadrant of ZˆZ with elbows �� and
finitely many crosses such that no two lines, or pipes, cross more than once. The shape
of a pipe dream is the permutation obtained by following the pipes from the y-axis to
the x-axis. Let PDpwq denote the set of pipe dreams of shape w. For example, the pipe
dreams of shape 135264 P S6 are given Figure 2.
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Figure 2: The 25 elements of PDp135264q.

To each pipe dream P we associate the weak composition wtpPq, where wtpPqi is the
number of crosses in the ith row of P.

Definition 2.2 ([3]). For w a permutation with no descents at or beyond n, the Schubert
polynomial Sw “ Swpx1, . . . , xn´1q is given by

Sw “
ÿ

PPPDpwq

xwtpPq. (2.3)

For example, from Figure 2 we can compute

S135264 “ x22000
` 2x21100

` x21010
` x21001

` x20200
` x20110

` x20101

`2x12100
` x12010

` x12001
` 2x11200

` 2x11110
` 2x11101

` x10210 (2.4)
`x10201

` x02200
` x02110

` x02101
` x01210

` x01201.

Definition 2.3. ([2]) A pipe dream is quasi-Yamanouchi if, for every i, the westernmost
in row i is in the first column or lies weakly west of some in row i ` 1. Let QPDpwq
denote the set of quasi-Yamanouchi pipe dreams of shape w.
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For example, of the pipe dreams for 135264 shown in Figure 2, five are quasi-
Yamanouchi. These are shown in Figure 3.
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Figure 3: The five quasi-Yamanouchi pipe dreams for w “ 135264.

Quasi-Yamanouchi pipe dreams index the fundamental slide expansion of Schubert
polynomials.

Theorem 2.4. ([2]) For w any permutation, we have

Sw “
ÿ

PPQPDpwq

FwtpPq. (2.5)

For example, the fundamental slide expansion of S135264 has only five terms, corre-
sponding to the five quasi-Yamanouchi pipe dreams of Figure 3:

S135264 “ Fp0,1,2,0,1q ` Fp0,2,1,0,1q ` Fp0,2,2,0,0q ` Fp1,1,2,0,0q ` Fp1,2,1,0,0q. (2.6)

This significantly compacts the 25-term monomial expansion of S135264. Theorem 2.4
generalizes to Schubert polynomials Gessel’s fundamental quasisymmetric expansion
[8] of Schur polynomials.

The fundamental slide basis also has a triangularity with respect to the Schubert
basis, allowing computationally efficient changes between these bases. Let Lpwq denote
the Lehmer code of w, i.e., Lpwqi is the number of j ą i such that wi ą wj.

Proposition 2.5. ([2]) For w any permutation, there are coefficients cw,b P Zě0 such that

Sw “ FLpwq `
ÿ

bąLpwq

cw,bFb. (2.7)

We now consider stability properties of the fundamental slide expansion. For w a per-
mutation of n, let 1m ˆw be the permutation p1, . . . , m, wp1q `m, . . . wpnq `mq of n`m,
and for a a weak composition of length n, let 0m ˆ a be the weak composition of length
n`m obtained by prepending m zeros to a. Let Rpwq be the set of reduced decompo-
sitions of w. One can define an explicit statistic η on permutations ([2]), indexing the
precise point at which the fundamental slide expansion of Sw stabilizes.

Theorem 2.6. ([2]) For w a permutation, if ηpwq ď 0, then #QPDpwq “ #Rpwq, and otherwise

0 ă #QPDpwq ă ¨ ¨ ¨ ă #QPDp1ηpwq
ˆwq “ ¨ ¨ ¨ “ #Rpwq. (2.8)
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In particular, the fundamental slide expansion of a Schubert polynomial is stable
precisely when its terms are in bijection with Rpwq.

Corollary 2.7. ([2]) For any permutation w, let η “ ηpwq. Then, for any m ě η, we have

S1mˆw “
ÿ

a
rFa | S1ηˆwsF0m´ηˆa, (2.9)

where rFa | S1ηˆws means the coefficient of Fa in the fundamental slide expansion of S1ηˆw.

For example, we have

S24153 “ Fp1,2,0,1q ` Fp2,1,0,1q ` Fp2,2,0,0q,
S135264 “ Fp0,1,2,0,1q ` Fp0,2,1,0,1q ` Fp0,2,2,0,0q ` Fp1,1,2,0,0q ` Fp1,2,1,0,0q,
S1246375 “ Fp0,0,1,2,0,1q ` Fp0,0,2,1,0,1q ` Fp0,0,2,2,0,0q ` Fp0,1,1,2,0,0q ` Fp0,1,2,1,0,0q.

and the fundamental slide expansion of S1mˆ24153 has 5 terms for all m ě 1.

3 Products

We give a combinatorial formula for the structure constants of the fundamental slide
basis by generalizing the shuffle product of Eilenberg and Mac Lane [6] to weak compo-
sitions. Let H denote the empty word.

Definition 3.1 ([6]). The shuffle product of words A and B, denoted by A� B, is defined
recursively by

A�H “ H� A “ tAu and A� B “ tA1pA2 ¨ ¨ ¨ A`pAq� Bqu Y tB1pA� B2 ¨ ¨ ¨ B`pBqqu,

That is, A� B is the set of all ways of riffle shuffling the terms of A, in order, with
the terms of B, in order. For example, we have

55111� 82 “

$

’

’

&

’

’

%

5511182 5511812 5518112 5581112 5851112 8551112
5511821 5518121 5581121 5851121 8551121 5518211
5581211 5851211 8551211 5582111 5852111 8552111
5825111 8525111 8255111

,

/

/

.

/

/

-

.

The descent composition of C, denoted by DespCq, is the lengths of successive increasing
runs of the letters read from left to right. For the example above, the last three terms on
the right hand side have descent compositions p2, 2, 3q, p1, 1, 2, 3q, p1, 3, 3q, respectively.

Definition 3.2. ([2]) Let a, b be weak compositions of length n. Let A and B be the
words defined by A “ p2n ´ 1qa1 ¨ ¨ ¨ p3qan´1p1qan and B “ p2nqb1 ¨ ¨ ¨ p4qbn´1p2qbn , and let
DesApCqi (respectively DesBpCqi) be the number of letters from A (respectively B) in the
ith increasing run of C. Define the shuffle set of a and b, denoted by SSpa, bq, by

SSpa, bq “ tC P A� B | DesApCq ě a and DesBpBq ě bu. (3.1)
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For example, SSpp0, 2, 0, 3q, p1, 0, 0, 1qq is given by

SSpp0, 2, 0, 3q, p1, 0, 0, 1qq “

$

&

%

5581112 5851112 8551112 5581121 5851121
8551121 5581211 5851211 8551211 5582111
5852111 8552111 5825111 8255111

,

.

-

.

Definition 3.3. ([2]) For weak compositions a, b of length n, define the slide product of a
and b, denoted by a� b, to be the formal sum

a� b “
ÿ

CPSSpa,bq

Despbump
pa,bqpCqq (3.2)

where bump
pa,bqpCq is the unique element of 0n´`pDespCqq

�C with DesApbump
pa,bqpCqq ě

a and DesBpbump
pa,bqpCqq ě b and if D P 0n´`

� C satisfies DesApDq ě a and DesBpDq ě
b, then DespDq ě Despbump

pa,bqpCqq.

Continuing with our example, we have

p0, 2, 0, 3q� p1, 0, 0, 1q “ p3, 0, 0, 4q ` p2, 1, 0, 4q ` p1, 2, 0, 4q ` p3, 0, 3, 1q ` p2, 1, 3, 1q
p1, 2, 3, 1q ` p3, 0, 2, 2q ` p2, 1, 2, 2q ` p1, 2, 2, 2q ` p3, 0, 1, 3q
p2, 1, 1, 3q ` p1, 2, 1, 3q ` p2, 2, 0, 3q ` p1, 3, 0, 3q.

Theorem 3.4. ([2]) For weak compositions a and b of length n, we have

FaFb “
ÿ

c
rc | a� bsFc, (3.3)

where rc | a� bs means the coefficient of c in the slide product a� b.

From the running example, we have

Fp0,2,0,3qFp1,0,0,1q “ Fp3,0,0,4q ` Fp2,1,0,4q ` Fp1,2,0,4q ` Fp3,0,3,1q ` Fp2,1,3,1q

Fp1,2,3,1q ` Fp3,0,2,2q ` Fp2,1,2,2q ` Fp1,2,2,2q ` Fp3,0,1,3q

Fp2,1,1,3q ` Fp1,2,1,3q ` Fp2,2,0,3q ` Fp1,3,0,3q.

Since the Schubert polynomial Sw represents the Schubert class of w in the coho-
mology of the flag manifold, the structure constants cw

u,v of the Schubert basis enumerate
flags in a generic triple intersection of Schubert varieties. Thus these so-called Littlewood–
Richardson coefficients are nonnegative integers. A fundamental problem in Schubert cal-
culus is to find a positive combinatorial construction for these numbers. One impediment
to solving this problem is that computations quickly become intractable when multiply-
ing out monomials. The following Littlewood–Richardson rule for the fundamental slide
expansion of the product of Schubert polynomials gives us a more compact formula that
should make computer experimentation possible.
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Theorem 3.5. ([2]) For u, v permutations and a a weak composition, define ca
u,v by

SuSv “
ÿ

a
ca

u,vFa. (3.4)

Then we have
ca

u,v “
ÿ

pP,QqPQPDpuqˆQPDpvq

ra | wtpPq�wtpQqs. (3.5)

For example, we can compute the product S24153S2431 by

S24153S2431 “
`

Fp1,2,0,1q ` Fp2,1,0,1q ` Fp2,2,0,0q
˘ `

Fp1,2,1,0q ` Fp2,1,1,0q
˘

“ Fp2,4,1,1q ` 2Fp3,3,1,1q ` Fp4,2,1,1q ` Fp2,4,2,0q

`2Fp3,3,2,0q ` Fp4,2,2,0q ` Fp3,4,1,0q ` Fp4,3,1,0q

“
`

Fp2,4,1,1q ` Fp3,3,1,1q ` Fp4,2,1,1q
˘

`
`

Fp3,3,1,1q
˘

`
`

Fp3,3,2,0q
˘

`
`

Fp2,4,2,0q ` Fp3,3,2,0q ` Fp4,2,2,0q
˘

`
`

Fp3,4,1,0q ` Fp4,3,1,0q
˘

“ S362415 `S45231 `S45312 `S364125 `S462135.

Here, in the last step we made use of the triangularity between the Schubert basis and
the fundamental slide basis given in Proposition 2.5.

Moreover, similarly to Theorem 2.6, one can define an explicit statistic ζ on pairs of
permutations ([2]) that indexes the precise point at which the fundamental slide expan-
sion of a product of Schubert polynomials stabilizes.

Theorem 3.6. ([2]) For permutations u, v, let ζ “ ζpu, vq. Then for all m ě ζ, we have

S1mˆuS1mˆv “
ÿ

a
rFa | S1ζˆuS1ζˆvsF0m´ζˆa. (3.6)

4 Kohnert tableaux and key polynomials

The key polynomials, originally defined by Demazure [5] and studied combinatorially
by Lascoux and Schützenberger [12], form another important Z-basis for polynomials.
There are many combinatorial definitions of key polynomials: see, e.g., [14]. We will use
a model due to Kohnert [10].

A diagram is an array of finitely many cells in the first quadrant of ZˆZ. Define the
key diagram of a to be the diagram with ai cells in row i, left justified. A Kohnert move on
a diagram moves the rightmost cell of a given row to the first available position below,
jumping over other cells in its way as needed. Let KMpaq be the set of all diagrams that
can be obtained by applying a series of Kohnert moves to the key diagram of a. For
example, see Figure 4.
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Figure 4: The nine Kohnert diagrams for p0, 3, 2q.

Definition 4.1 ([10]). The key polynomial indexed by a, denoted by κa, is given by

κa “
ÿ

DPKMpaq

xwtpDq, (4.1)

where wtpDq is the weak composition whose ith part gives the number of cells in row i.

For example, from Figure 4 we can compute

κ032 “ x032
` x122

` x212
` x302

` x221
` x311

` x320
` x131

` x230.

Definition 4.2. ([1]) Given a weak composition a of length n, a Kohnert tableau of shape a
is a diagram filled with entries 1a1 , 2a2 , . . . , nan , one per cell, satisfying:

(i) there is exactly one i in each column 1 through ai;
(ii) each entry in row i is at least i;

(iii) the i’s weakly descend from left to right;
(iv) if i ă j appear in a column with i above j, then there is an i right of and strictly

above j.

Denote the set of Kohnert tableaux of shape a by KTpaq.

For example, Figure 5 shows the elements of KTp0, 3, 2q. Compare this with Figure 4.
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3
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Figure 5: The nine Kohnert tableaux of shape p0, 3, 2q.

Theorem 4.3. ([1]) There is a weight-preserving bijection between KMpaq and KTpaq. Thus,

κa “
ÿ

TPKTpaq

xwtpTq, (4.2)

where wtpTq is the weak composition whose ith part is the number of cells in row i of T.
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Definition 4.4. ([1]) A Kohnert tableau is quasi-Yamanouchi if the leftmost cell in each
nonempty row i either has entry equal to i, or is weakly left of some cell in row i ` 1.
Denote the set of quasi-Yamanouchi Kohnert tableaux of shape a by QKTpaq.

For example, Figure 6 gives the quasi-Yamanouchi Kohnert tableaux of shape p0, 3, 2q.

3 3
2 2 2

3
2 3

2 2

3
2 2 2

3
2 2 2
3 3

Figure 6: The four quasi-Yamanouchi Kohnert tableaux of shape p0, 3, 2q.

Similarly to Theorem 2.4, quasi-Yamanouchi Kohnert tableaux index the fundamental
slide expansion of a key polynomial.

Theorem 4.5. ([1]) For a weak composition a, we have

κa “
ÿ

TPQKTpaq

FwtpTq, (4.3)

where wtpTq is the weak composition whose ith part is the number of cells in row i of T.

Continuing the running example, from Figure 6 we can compute

κ032 “ F032 ` F221 ` F131 ` F230.

Similarly to Theorem 2.6, one can define an explicit statistic η1 on weak compositions
([1]), indexing the precise point at which the fundamental slide expansion of κa stabilizes.
Let sortpaq be the entries of a arranged in decreasing order, and SYTpsortpaqq the set of
standard Young tableaux of shape sortpaq.

Theorem 4.6. ([1]) For a composition a of length n, and m ě η1paq, we have

0 ă# QKTpaq ă ¨ ¨ ¨ ă# QKTp0η1paq
ˆ aq “ ¨ ¨ ¨ “# QKTp0m

ˆ aq “# SYTpsortpaqq. (4.4)

Corollary 4.7. ([1]) For any weak composition a, let η1 “ η1paq. Then, for any m ě η1, we have

κ0mˆa “
ÿ

b

rFb | κ0η1ˆasF0m´η1ˆb. (4.5)

From Figures 6 and 7, we compute

κ32 “ F32

κ032 “ F032 ` F221 ` F131 ` F230

κ0032 “ F0032 ` F0221 ` F0131 ` F0230 ` F1220,

and |QKTp0m ˆ p3, 2qq| “ 5 for any m ě 2.
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4 4
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Figure 7: The five quasi-Yamanouchi Kohnert tableaux of shape p0, 0, 3, 2q.

5 Quasi-key polynomials

We now impose additional conditions on Kohnert tableaux that will provide a combina-
torial model for a new family of polynomials.

Definition 5.1. ([1]) Given a weak composition a of length n, a quasi-Kohnert tableau of
shape a is a Kohnert tableau of shape a satisfying the following additional conditions:

(i) the leftmost column is strictly increasing from bottom to top, and
(ii) if i ă j are in consecutive columns with i left of and weakly above j, then ai ě aj.

Denote the set of quasi-Kohnert tableaux of shape a by qKTpaq.

For example, only the first eight Kohnert tableaux in Figure 5 satisfy the quasi-
Kohnert conditions for the shape p0, 3, 2q.

3 3
2 2 2

3 3
2 2

2

3 3
2

2 2

3 3

2 2 2

3
2 3

2 2

3
3

2 2 2
3 3
2 2 2

3
2 2 2

3

Figure 8: Quasi-Kohnert tableaux of shape p0, 3, 2q.

We now define quasi-key polynomials as the weighted sum of quasi-Kohnert tableaux.

Definition 5.2. ([1]) The quasi-key polynomial indexed by a, denoted by Qa, is given by

Qa “
ÿ

TPqKTpaq

xwtpTq. (5.1)

For example, from Figure 8, we compute

Q032 “ x032
` x122

` x212
` x302

` x221
` x311

` x320
` x131.

The quasi-key polynomials also expand positively in the fundamental slide basis,
with the expansion indexed by the set QqKTpaq of quasi-Kohnert tableaux of shape a
that are also quasi-Yamanouchi.
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Theorem 5.3. ([1]) For a weak composition a of length n, we have

Qa “
ÿ

TPQqKTpaq

FwtpTq. (5.2)

4 4
3 3 3

4
3 4

3 3

4
3 3 3

4
3 3 3
2 2

3 3
2 3

2

Figure 9: Quasi-Yamanouchi quasi-Kohnert tableaux of shape p0, 0, 3, 2q (left three) and
of shape p0, 2, 3, 0q (right two).

For example, we compute the fundamental slide expansion for the quasi-key poly-
nomials for p0, 0, 3, 2q and p0, 2, 3, 0q using the quasi-Yamanouchi Kohnert tableaux that
satisfy the quasi-Kohnert conditions as depicted in Figure 9. In this case, we have

Q0032 “ F0032 ` F0221 ` F0131 and Q0230 “ F0230 ` F1220.

Recalling Figure 7, observe that Q0032 `Q0230 “ κ0032.
Key polynomials expand positively in quasi-key polynomials. A left swap on a weak

composition a exchanges two parts ai ă aj of a where i ă j. Let lswappaq be the set of
weak compositions obtainable via some (possibly empty) sequence of left swaps on a,
and Qlswappaq the dominance-minimal elements of lswappaq.

Theorem 5.4. ([1]) For any weak composition a,

κa “
ÿ

bPQlswappaq

Qb. (5.3)

By Theorem 5.4, we have the following corollary to Theorem 4.6:

Theorem 5.5. ([1]) For any weak composition a and for any m ě η1paq, we have

Q0mˆa “
ÿ

b

rFb | Q0η1ˆasF0m´η1ˆb. (5.4)

For example,

Q32 “ F32

Q032 “ F032 ` F221 ` F131

and Q0mˆ32 has three terms for m ě 1.
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